Case Reports
Journal Article
Add like
Add dislike
Add to saved papers

TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly.

BACKGROUND: Trm10 is a tRNA m(1)G9 methyltransferase, which in yeast modifies 12 different tRNA species, yet is considered non-essential for viability under standard growth conditions. In humans, there are three Trm10 orthologs, one mitochondrial and two presumed cytoplasmic. A nonsense mutation in one of the cytoplasmic orthologs (TRMT10A) has recently been associated with microcephaly, intellectual disability, short stature and adolescent onset diabetes.

METHODS AND RESULTS: The subjects were three patients who suffered from microcephaly, intellectual disability, short stature, delayed puberty, seizures and disturbed glucose metabolism, mainly hyperinsulinaemic hypoglycaemia. A homozygous Gly206Arg (G206R) mutation in the TRMT10A gene was identified using whole exome sequencing. The mutation segregated in the family and was absent from large control cohorts. Determination of the methylation activity of the expressed wild-type (WT) and variant TRMT10A enzymes with transcripts of (32)P -tRNA(Gly) GCC as a substrate revealed a striking defect (<0.1% of WT activity) for the variant enzyme. The binding affinity of the G206R variant enzyme to tRNA, determined by fluorescence anisotropy, was similar to that of the WT enzyme.

CONCLUSIONS: The completely abolished m(1)G9 methyltransferase activity of the mutant enzyme is likely due to significant defects in its ability to bind the methyl donor S-adenosyl methionine. We propose that TRMT10A deficiency accounts for abnormalities in glucose homeostasis initially manifesting both ketotic and non-ketotic hypoglycaemic events with transition to diabetes in adolescence, perhaps as a consequence of accelerated β cell apoptosis. The seizure disorder and intellectual disability are probably secondary to mutant gene expression in neuronal tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app