Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Gene expression, function, and diversity of Nkx2-4 in the rainbow trout, Oncorhynchus mykiss.

Nkx2 homeodomain transcription factors are involved in various developmental processes and cell specification: e.g. in mammals, NKX2-1 is essential for thyroid-specific gene expression and thyroid morphogenesis. Among Nkx2 proteins, information is still very limited for Nkx2-4. In the present study, we have identified three distinct cDNAs encoding Nkx2-4 isoforms (Nkx2-4a, -b, and -c) from the rainbow trout thyroid tissue, and characterized their transcriptional properties. The trout Nkx2-4 proteins were all predicted to conserve three characteristic domains: the tinman-like amino terminal decapeptide, the NK2 homeodomain, and the NK2-specific domain, and also share 75-89% amino acid similarity. It was shown by dual luciferase assay that Nkx2-4a and Nkx2-4b, but not Nkx2-4c, significantly activated transcription from a cotransfected rat thyroglobulin (TG) promoter. An electrophoretic mobility shift assay indicated that all the Nkx2-4 isoforms could bind to the TG promoter, implying that the faint transcriptional activity of Nkx2-4c might result from some critical amino acid substitution(s) outside the homeodomain. RT-PCR analysis revealed similar tissue distribution patterns for Nkx2-4a and Nkx2-4b mRNAs. Both mRNAs were expressed abundantly in the thyroid, and weakly in the testis. On the other hand, Nkx2-4c mRNA was detected in the ovary as well as in the thyroid. The expression sites of Nkx2-4c mRNA were localized, by in situ hybridization histochemistry, to the ovarian granulosa cells and to the thyroid follicular cells. The results suggest that in the rainbow trout, Nkx2-4a and Nkx2-4b might play a major role in TG gene transcription whereas Nkx2-4c might have some functions in the ovary as well as the thyroid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app