JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction.

Circulation Research 2014 August 30
RATIONALE: The cellular and molecular basis for post-myocardial infarction (MI) structural and functional remodeling is not well understood.

OBJECTIVE: Our aim was to determine if Ca2+ influx through transient receptor potential canonical (TRPC) channels contributes to post-MI structural and functional remodeling.

METHODS AND RESULTS: TRPC1/3/4/6 channel mRNA increased after MI in mice and was associated with TRPC-mediated Ca2+ entry. Cardiac myocyte-specific expression of a dominant-negative (loss-of-function) TRPC4 channel increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling after MI while increasing survival in mice. We used adenovirus-mediated expression of TRPC3/4/6 channels in cultured adult feline myocytes to define mechanistic aspects of these TRPC-related effects. TRPC3/4/6 overexpression in adult feline myocytes induced calcineurin (Cn)-nuclear factor of activated T-cells (NFAT)-mediated hypertrophic signaling, which was reliant on caveolae targeting of TRPCs. TRPC3/4/6 expression in adult feline myocytes increased rested state contractions and increased spontaneous sarcoplasmic reticulum Ca2+ sparks mediated by enhanced phosphorylation of the ryanodine receptor. TRPC3/4/6 expression was associated with reduced contractility and response to catecholamines during steady-state pacing, likely because of enhanced sarcoplasmic reticulum Ca2+ leak.

CONCLUSIONS: Ca2+ influx through TRPC channels expressed after MI activates pathological cardiac hypertrophy and reduces contractility reserve. Blocking post-MI TRPC activity improved post-MI cardiac structure and function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app