Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Complex tissue-specific epigenotypes in Russell-Silver Syndrome associated with 11p15 ICR1 hypomethylation.

Human Mutation 2014 October
Russell-Silver Syndrome (RSS) is a prenatal and postnatal growth retardation syndrome caused mainly by 11p15 ICR1 hypomethylation. Clinical presentation is heterogeneous in RSS patients with 11p15 ICR1 hypomethylation. We previously identified a subset of RSS patients with 11p15 ICR1 and multilocus hypomethylation. Here, we examine the relationships between IGF2 expression, 11p15 ICR1 methylation, and multilocus imprinting defects in various cell types from 39 RSS patients with 11p15 ICR1 hypomethylation in leukocyte DNA. 11p15 ICR1 hypomethylation was more pronounced in leukocytes than in buccal mucosa cells. Skin fibroblast IGF2 expression was correlated with the degree of ICR1 hypomethylation. Different tissue-specific multilocus methylation defects coexisted in 38% of cases, with some loci hypomethylated and others hypermethylated within the same cell type in some cases. Our new results suggest that tissue-specific epigenotypes may lead to clinical heterogeneity in RSS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app