JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Autophagy defects suggested by low levels of autophagy activator MAP1S and high levels of autophagy inhibitor LRPPRC predict poor prognosis of prostate cancer patients.

MAP1S (originally named C19ORF5) is a widely distributed homolog of neuronal-specific MAP1A and MAP1B, and bridges autophagic components with microtubules and mitochondria to affect autophagosomal biogenesis and degradation. Mitochondrion-associated protein LRPPRC functions as an inhibitor for autophagy initiation to protect mitochondria from autophagy degradation. MAP1S and LRPPRC interact with each other and may collaboratively regulate autophagy although the underlying mechanism is yet unknown. Previously, we have reported that LRPPRC levels serve as a prognosis marker of patients with prostate adenocarcinomas (PCA), and that patients with high LRPPRC levels survive a shorter period after surgery than those with low levels of LRPPRC. MAP1S levels are elevated in diethylnitrosamine-induced hepatocelular carcinomas in wildtype mice and the exposed MAP1S-deficient mice develop more malignant hepatocellular carcinomas. We performed immunochemical analysis to evaluate the co-relationship among the levels of MAP1S, LRPPRC, P62, and γ-H2AX. Samples were collected from wildtype and prostate-specific PTEN-deficient mice, 111 patients with PCA who had been followed up for 10 years and 38 patients with benign prostate hyperplasia enrolled in hospitals in Guangzhou, China. The levels of MAP1S were generally elevated so the MAP1S-mediated autophagy was activated in PCA developed in either PTEN-deficient mice or patients than their respective benign tumors. The MAP1S levels among patients with PCA vary dramatically, and patients with low MAP1S levels survive a shorter period than those with high MAP1S levels. Levels of MAP1S in collaboration with levels of LRPPRC can serve as markers for prognosis of prostate cancer patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app