Add like
Add dislike
Add to saved papers

Personalized predictive lung dosimetry by technetium-99m macroaggregated albumin SPECT/CT for yttrium-90 radioembolization.

BACKGROUND: For yttrium-90 ((90)Y) radioembolization, the common practice of assuming a standard 1,000-g lung mass for predictive dosimetry is fundamentally incongruent with the modern philosophy of personalized medicine. We recently developed a technique of personalized predictive lung dosimetry using technetium-99m ((99m)Tc) macroaggregated albumin (MAA) single photon emission computed tomography with integrated CT (SPECT/CT) of the lung as part of our routine dosimetric protocol for (90)Y radioembolization. Its rationales are the technical superiority of SPECT/CT over planar scintigraphy, ease and convenience of lung auto-segmentation CT densitovolumetry, and dosimetric advantage of patient-specific lung parenchyma masses.

METHODS: This is a retrospective study of our pulmonary clinical outcomes and comparison of lung dosimetric accuracy and precision by (99m)Tc MAA SPECT/CT versus conventional planar methodology. (90)Y resin microspheres (SIR-Spheres) were used for radioembolization. Diagnostic CT densitovolumetry was used as a reference for lung parenchyma mass. Pulmonary outcomes were based on follow-up diagnostic CT chest or X-ray.

RESULTS: Thirty patients were analyzed. The mean lung parenchyma mass of our Southeast Asian cohort was 822 ± 103 g standard deviation (95% confidence interval 785 to 859 g). Patient-specific lung parenchyma mass estimation by CT densitovolumetry on (99m)Tc MAA SPECT/CT is accurate (bias -21.7 g) and moderately precise (95% limits of agreement -194.6 to +151.2 g). Lung mean radiation absorbed doses calculated by (99m)Tc MAA SPECT/CT and planar methodology are both accurate (bias <0.5 Gy), but (99m)Tc MAA SPECT/CT offers better precision over planar methodology (95% limits of agreement -1.76 to +2.40 Gy versus -3.48 to +3.31 Gy, respectively). None developed radiomicrosphere pneumonitis when treated up to a lung mean radiation absorbed dose of 18 Gy at a median follow-up of 4.4 months.

CONCLUSIONS: Personalized predictive lung dosimetry by (99m)Tc MAA SPECT/CT is clinically feasible, safe, and more precise than conventional planar methodology for (90)Y radioembolization radiation planning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app