Add like
Add dislike
Add to saved papers

GLP-1 receptor agonist liraglutide reverses long-term atypical antipsychotic treatment associated behavioral depression and metabolic abnormalities in rats.

Mood disorder patients that are on long-term atypical antipsychotics treatment frequently experience metabolic dysfunctions. In addition to this, accumulating evidences points to increased risk of structural abnormalities, brain volume changes, altered neuroplasticity and behavioral depression with long-term antipsychotics use. However, there is paucity of preclinical evidences for long-term antipsychotic associated depression-like behavior. The objectives of the present study were: (1) to evaluate influence of long-term antipsychotic (olanzapine) treatment on rat behavior in forced swim test (FST) as a model for depression and; (2) to examine impact of glucagon-like peptide 1 (GLP-1) receptor agonist liraglutide - an antidiabetic medication for type II diabetes, on long-term olanzapine associated metabolic and behavioral changes in rats. Daily olanzapine treatment (0.5 mg/kg; p.o.) for 8-9 weeks significantly increased body weights, food and water intake, plasma cholesterol and triglycerides and immobility time in FST with parallel reduction in plasma HDL cholesterol levels. These results points to development of metabolic abnormalities and depression-like behavior with long-term olanzapine treatment. Acute liraglutide (50 μg/kg; i.p.) and imipramine (10 mg/kg, i. p.) treatment per se significantly decreased duration of immobility in FST compared to vehicle treated rats. Additionally, 3-week liraglutide treatment (50 μg/kg; i.p., daily) partially reversed metabolic abnormalities and depression-like behavior with long-term olanzapine-treatment in rats. None of these treatment regimens affected locomotor behavior of rats. In summary, add-on GLP-1 receptor agonists promise novel alternatives to counteract long-term antipsychotics associated behavioral and metabolic complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app