Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA Let-7 regulates molting and metamorphosis in the silkworm, Bombyx mori.

MicroRNAs (miRNAs) are a class of endogenous, non-coding, regulatory RNA molecules that post-transcriptionally regulate gene expression by binding to the 3'UTRs of mRNA targets and thus cause their degradation or translational inhibition. In insects, important roles of miRNAs in various biological processes have been demonstrated in Drosophila melanogaster. However, biological roles of miRNAs are barely unveiled in the majority of insect species due to limited genetic tools. In the present study, we introduce the transgenic miRNA sponge (miR-SP) technology combining with the binary GAL4/UAS system in the domesticated silkworm, Bombyx mori, to exploit the biological function of an evolutionally conserved miRNA, let-7. We successfully established transgenic silkworm lines in which a miRNA sponge construct targeting BmLet-7 seed region was expressed in a ubiquitous manner directed by A3-GAL4 driver. Transgenic animals showed decreased expression of BmLet-7, leading to developmental arrestment during the larval-larval and larval-pupal transition. Simultaneously, expression levels of the predicted BmLet-7 target genes, FTZ-F1 and Eip74EF (E74), key regulatory factors in the ecdysone pathway, were elevated in transgenic animals. The current study is the first report on application of the transgenic miR-SP technology in non-drosophilid insects, which will not only contribute to better understanding of let-7 biological roles, but also greatly facilitate future miRNA functional analysis in insects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app