JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

NADH dehydrogenase-like behavior of nitrogen-doped graphene and its application in NAD(+)-dependent dehydrogenase biosensing.

A novel electrochemical biosensing platform for nicotinamide adenine dinucleotide (NAD(+))-dependent dehydrogenase catalysis was designed using the nitrogen-doped graphene (NG), which had properties similar to NADH dehydrogenase (CoI). NG mimicked flavin mononucleotide (FMN) in CoI and efficiently catalyzed NADH oxidation. NG also acted as an electron transport "bridge" from NADH to the electrode due to its excellent conductivity. In comparison with a bare gold electrode, an 800 mV decrease in the overpotential for NADH oxidation and CoI-like behavior were observed at NG-modified electrode, which is the largest decrease in overpotential for NADH oxidation reported to date. The catalytic rate constant (k) for the CoI-like behavior of NG was estimated to be 2.3×10(5) M(-1) s(-1), which is much higher than that of other previously reported FMN analogs. The Michaelis-Menten constant (Km) of NG was 26 μM, which is comparable to the Km of CoI (10 μM). Electrodes modified with NG and NG/gold nanoparticals/formate dehydrogenase (NG/AuNPs/FDH) showed excellent analytical performance for the detection of NADH and formate. This electrode fabrication strategy could be used to create a universal biosensing platform for developing NAD(+)-dependent dehydrogenase biosensors and biofuel cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app