English Abstract
Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

[Research progresses of Mycobacterium tuberculosis cytochrome P450s as a potential drug target].

Identification and validation of a new target is one of the most important steps for new antituberculosis (TB) drug discovery. Researches have shown that Mycobacterium tuberculosis (Mtb) encodes 20 CYP450 enzymes which play important roles in the synthesis and metabolism of lipid, cholesterol utilization, and the electron transport of respiratory chain in Mtb. With the critical roles within the organism as well as the protein structures of six Mtb CYP450 enzymes being clarified, some of them have been highlighted as potential anti-tuberculosis targets. In this paper, the phylogenetic analysis, the structural features, and the enzymatic functions of Mtb CYPs, as well as the mechanism of interactions with selective inhibitors such as azole antifungal agents for the CYPs have been reviewed and summarized. The druggability of the CYPs has also been analyzed for their further utility as targets in high throughput screening and rational design of more selective inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app