Add like
Add dislike
Add to saved papers

Effect of nonparallel placement of in-circle bipolar radiofrequency ablation probes on volume of tissue ablated with heat sink.

OBJECTIVES: Percutaneous bipolar radiofrequency ablation (RFA) is a minimally invasive technique for treating liver tumors. It is not always possible to insert the bipolar probes parallel to each other on either side of tumor, since it restricts maneuverability away from vital structures or ablate certain tumor shape. Therefore, we investigated how nonparallel placement of probes affected ablation.

METHODS: Bipolar RFA in parallel and in divergent positions were submerged in tissue model (800 mL egg white) at 37°C and ablated. Temperature probes, T1 and T2 were placed 8.00 mm below the tip of the probes, T3 in between the probe coil elements and T4 and T5 at water inlet and outlet, respectively. Both models with heat sink (+HS) and without (-HS) were investigated.

RESULTS: The mean ablated tissue volume, mass, density and height increased linearly with unit angle increase for -HS model. With +HS, a smaller increase in mean volume and mass, a slightly greater increase in mean density but a reduction in height of tissue was seen. The mean ablation time and duration of maximum temperature with +HS was slightly larger, compared with -HS, while -HS ablated at a slightly higher temperature. The heat sink present was minimal for probes in parallel position compared to nonparallel positions.

CONCLUSION: Divergence from parallel insertion of bipolar RFA probes increased the mean volume, mass, and density of tissue ablated. However, the presence of large heat sinks may limit the application of this technique, when tumors border on larger vessels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app