JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cluap1 is essential for ciliogenesis and photoreceptor maintenance in the vertebrate eye.

PURPOSE: To identify the mutation and cell biological underpinnings of photoreceptor defects in zebrafish au5 mutants.

METHODS: Whole genome sequencing and SNP mapping were used to determine the genomic interval that harbors the au5 mutation. A candidate mutation was cloned and sequenced, and mRNA rescue used to validate that the affected gene was correctly identified. In situ hybridization, immunohistochemistry, and confocal imaging were used to determine the effects on photoreceptor development and maintenance in mutant retinae, and to determine if ciliogenesis or cilia-dependent development was affected in mutant embryos. Expression of tagged proteins and high-speed in vivo confocal imaging was used to quantify intraflagellar transport (IFT) and IFT particle localization within multiciliated cells of the Xenopus epidermis.

RESULTS: The au5 mutants possess a nonsense mutation in cluap1, which encodes a component of the IFT machinery. Photoreceptor defects result from degeneration of photoreceptors, and defects in ciliogenesis precede degeneration. Cilia in the olfactory pit are absent, and left-right heart positioning is aberrant, consistent with a role for cluap1 during ciliogenesis and cilia-dependent development. High-speed in vivo imaging demonstrates that cluap1 undergoes IFT and that it moves along the cilium bidirectionally, with similar localization and kinetics as IFT20, an IFT-B complex component.

CONCLUSIONS: We identified a novel mutation in cluap1 and determined that photoreceptor maintenance is dependent on cluap1. Imaging data support a model in which cluap1 is a component of the IFT-B complex, and cilia formation requires cluap1 function. These data may provide new insights into the mechanism of photoreceptor degeneration in retinal ciliopathies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app