JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Heart ventricles specific stress-induced changes in β-adrenoceptors and muscarinic receptors.

The left and right ventricles fulfill different role in heart function. Here we compare chamber specific changes in local catecholamine concentrations; gene expression and the receptor protein amount of all three β-adrenoceptors (β-AR) in rat right heart ventricles exposed to acute (1 session) and repeated (7 sessions) immobilization stress (IMMO) vs. previously observed changes in left ventricles. Density of muscarinic receptors as main cardio-inhibitive receptors was also measured. In the right ventricles, noradrenaline and adrenaline were increased. No β1-AR changes were observed, in spite of the increased sympathetic activity. On the other hand, we have found a decrease of β2-AR gene expression (reduction to 30%) after 7 IMMO and protein (to 59%) after 1 IMMO. β3-AR gene expression was increased after 7 IMMO. Muscarinic receptor density was not changed. When comparing correlation in left and right ventricles, there was strong correlation between adrenaline and β2-AR gene expression, protein and β3-AR gene expression in the left ventricles while only correlation between adrenaline and β2-AR mRNA and protein in the right ventricles was found. Our results show that maintenance of cardiac homeostasis under stress conditions are to a great extent achieved by a balance between different receptors and also by a balanced receptor changes in left vs. right ventricles. Taken together, decrease of cardio-stimulating β2-AR represents a new important mechanism by which β2-AR contributes to the heart physiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app