Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

NAD(P)H:quinone oxidoreductase 1 activation reduces blood pressure through regulation of endothelial nitric oxide synthase acetylation in spontaneously hypertensive rats.

BACKGROUND: Endothelial nitric oxide synthase (eNOS) is involved in blood pressure (BP) regulation through the production of nitric oxide. Sirtuin I (SIRT1), an NAD-dependent protein deacetylase, promotes vascular relaxation through deacetylation and activation of eNOS. β-Lapachone (βL) increases the cellular NAD(+)/NADH ratio by activating

NAD(P)H: quinone oxidoreductase 1 (NQO1). In this study, we verified whether activation of NQO1 by βL modulates BP through regulation of eNOS acetylation in a hypertensive animal model.

METHODS: Spontaneously hypertensive rats (SHRs) and an endothelial cell line (bEnd.3 cells) were used to investigate the hypotensive effect of βL and its mechanism of action.

RESULTS: βL treatment significantly lowered the BP in SHRs, but this hypotensive effect was completely blocked by eNOS inhibition with ω-nitro-l-arginine methyl ester. In vitro studies revealed that βL activated eNOS, which was accompanied by an increased NAD(+)/NADH ratio. Moreover, βL significantly decreased acetylation of eNOS; however, this reduced eNOS acetylation was completely precluded by inhibition of SIRT1 in the bEnd.3 cells and in the aorta of the SHRs. Consistent with these effects, βL-induced reduction in BP was also abolished by SIRT1 inhibition in the SHRs.

CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate that eNOS acetylation can be regulated by NQO1 activation in an SIRT1-dependent manner, which is correlated with the relief of hypertension. These findings provide strong evidence that NQO1 might be a new therapeutic target for hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app