JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds.

To confirm the effect of recombinant human bone morphogenetic protein-2 (BMP-2) for bone regeneration, BMP-2-loaded polycaprolactone (PCL)-gelatin (Gel)-biphasic calcium phosphate (BCP) fibrous scaffolds were fabricated using the electrospinning method. The electrospinning process to incorporate BCP nanoparticles into the PCL-Gel scaffolds yielded an extracellular matrix-like microstructure that was a hybrid system composed of nano- and micro-sized fibers. BMP-2 was homogeneously loaded on the PCL-Gel-BCP scaffolds for enhanced induction of bone growth. BMP-2 was initially released at high levels, and then showed sustained release behavior for 31 days. Compared with the PCL-Gel-BCP scaffold, the BMP-2-loaded PCL-Gel-BCP scaffold showed improved cell proliferation and cell adhesion behavior. Both scaffold types were implanted in rat skull defects for 4 and 8 weeks to evaluate the biological response under physiological conditions. Remarkable bone regeneration was observed in the BMP-2/PCL-Gel-BCP group. These results suggest that BMP-2-loaded PCL-Gel-BCP scaffolds should be considered for potential bone tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app