ENGLISH ABSTRACT
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

[Cloning and functional validation of promoter of mo-molybdopterin cofactor sulfurase gene in maize].

To overcome the problems caused by the over-expression of exogenous genes under the control of constitutive promoters, the promoter (ABA3s) sequence of maize (Zea mays) mo-molybdopterin cofactor sulfurase gene (ABA3) was cloned homologously, analyzed for its abiotic stress-responsive elements by the PlantCARE software, and detected for differential expression of the ABA3 gene under the abiotic stresses by real-time quantitative PCR. Then, this promoter was used to construct expression vector to start GUS (β-glucuronidase) gene, and transform maize calli by biolistics. After identification by histochemical staining, the ratio of the GUS activity relative to the luciferase activity (internal control) (GUS/LUC) was measured under the stresses of hypertonic, high salt, low temperature, and the induction of ABA, and used to evaluate the activity of the ABA3s promoter in response to abiotic stresses. The results showed that the ABA3 gene was differentially expressed under the stress of simulative drought, low temperature, high temperature, high salt, and the induction of ABA and ethylene, indicating that the promoter (ABA3s) of this gene is induced by abtiotic stress. The sequence analysis showed that the ABA3s promoter is 777 bp long, and contains abiotic stress-responsive elements ARE, HSE, MBS, TGA and circadian. The transformed calli by the expression vector of the GUS gene under the control of the ABA3s promoter showed positive in GUS detection in response to the abiotic stresses of drought, low temperature, high temperature, high salt, and the induction of ABA and ethylene. The GUS/LUC ratio was six folds higher than the blank control under the hypertonic stress of 8% mannitol. It is concluded that the promoter ABA3s is inducible in response to abiotic stresses, and might be applied to transgenic research of maize for abiotic tolerance after further functional evaluation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app