JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Adrenocorticotropin hormone 1-39 promotes proliferation and differentiation of oligodendroglial progenitor cells and protects from excitotoxic and inflammation-related damage.

Oligodendroglia (OL) are highly susceptible to damage and, like neurons, are terminally differentiated. It is important to protect OL precursors (OPC) because they are reservoirs of differentiating cells capable of myelination following perinatal insult and remyelination in white matter diseases, including multiple sclerosis (MS). Patients with relapsing-remitting MS are commonly treated with high-dose corticosteroids (CS) when experiencing an exacerbation. Adrenocorticotropin hormone (ACTH), a primary component of another approved MS exacerbation treatment, is a melanocortin peptide that stimulates production of CS by the adrenals. Melanocortin receptors are also found in the central nervous system (CNS) and on immune cells. ACTH is produced within the CNS and may have CS-independent effects on glia. We found that ACTH 1-39 stimulated proliferation of OPC, and to a lesser extent astroglia (AS) and microglia (MG), in rat glial cultures. ACTH accelerated differentiation of PDGFRα(+) OPC to a later stage marked by galactolipid expression and caused greater expansion of OL myelin-like sheets compared with untreated cells. Protective effects of ACTH on OPC were assessed by treating cultures with selected toxic agents, with or without ACTH. At 200 nM, ACTH protected OPC from death induced by staurosporine, glutamate, NMDA, AMPA, kainate, quinolinic acid, H2 O2 , and slow NO release, but not against kynurenic acid or rapid NO release. These agents and ACTH were not toxic to AS or MG. Our findings indicate that ACTH 1-39 provides benefits by increasing the number of OPC, accelerating their development into mature OL, and reducing OPC death from toxic insults.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app