Add like
Add dislike
Add to saved papers

Extreme genetic heterogeneity among the nine major tribal Taiwanese island populations detected with a new generation Y23 STR system.

The Taiwanese aborigines have been regarded as the source populations for the Austronesian expansion that populated Oceania to the east and Madagascar off Africa to the West. Although a number of genetic studies have been performed on some of these important tribes, the scope of the investigations has been limited, varying in the specific populations examined as well as the maker systems employed. This has made direct comparison among studies difficult. In an attempt to alleviate this lacuna, we investigate, for the first time, the genetic diversity of all nine major Taiwanese aboriginal tribes (Ami, Atayal, Bunun, Rukai, Paiwan, Saisat, Puyuma, Tsou and Yami) utilizing a new generation multiplex Y-STR system that allows for the genotyping of 23 loci from a single amplification reaction. This comprehensive approach examining 293 individuals from all nine main tribes with the same battery of forensic markers provides for the much-needed equivalent data essential for comparative analyses. Our results have uncovered that these nine major aboriginal populations exhibit limited intrapopulation genetic diversity and are highly heterogeneous from each other, possibly the result of endogamy, isolation, drift and/or unique ancestral populations. Specifically, genetic diversity, discrimination capacity, fraction of unique haplotypes and the most frequent haplotypes differ among the nine tribes, with the Tsou possessing the lowest values for the first three of these parameters. The phylogenetic analyses performed indicate that the genetic diversity among all nine tribes is greater than the diversity observed among the worldwide reference populations examined, indicating an extreme case of genetic heterogeneity among these tribes that have lived as close neighbors for thousands of years confined to the limited geographical area of an island.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app