Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Shallow-water sparsity-cognizant source-location mapping.

Using passive sonar for underwater acoustic source localization in a shallow-water environment is challenging due to the complexities of underwater acoustic propagation. Matched-field processing (MFP) exploits both measured and model-predicted acoustic pressures to localize acoustic sources. However, the ambiguity surface obtained through MFP contains artifacts that limit its ability to reveal the location of the acoustic sources. This work introduces a robust scheme for shallow-water source localization that exploits the inherent sparse structure of the localization problem and the use of a model characterizing the acoustic propagation environment. To this end, the underwater acoustic source-localization problem is cast as a sparsity-inducing stochastic optimization problem that is robust to model mismatch. The resulting source-location map (SLM) yields reduced ambiguities and improved resolution, even at low signal-to-noise ratios, when compared to those obtained via classical MFP approaches. An iterative solver based on block-coordinate descent is developed whose computational complexity per iteration is linear with respect to the number of locations considered for the SLM. Numerical tests illustrate the performance of the algorithm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app