Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

E-wave generated intraventricular diastolic vortex to L-wave relation: model-based prediction with in vivo validation.

The Doppler echocardiographic E-wave is generated when the left ventricle's suction pump attribute initiates transmitral flow. In some subjects E-waves are accompanied by L-waves, the occurrence of which has been correlated with diastolic dysfunction. The mechanisms for L-wave generation have not been fully elucidated. We propose that the recirculating diastolic intraventricular vortex ring generates L-waves and based on this mechanism, we predict the presence of L-waves in the right ventricle (RV). We imaged intraventricular flow using Doppler echocardiography and phase-contrast magnetic resonance imaging (PC-MRI) in 10 healthy volunteers. L-waves were recorded in all subjects, with highest velocities measured typically 2 cm below the annulus. Fifty-five percent of cardiac cycles (189 of 345) had L-waves. Color M-mode images eliminated mid-diastolic transmitral flow as the cause of the observed L-waves. Three-dimensional intraventricular flow patterns were imaged via PC-MRI and independently validated our hypothesis. Additionally as predicted, L-waves were observed in the RV, by both echocardiography and PC-MRI. The re-entry of the E-wave-generated vortex ring flow through a suitably located echo sample volume can be imaged as the L-wave. These waves are a general feature and a direct consequence of LV and RV diastolic fluid mechanics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app