JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Efficient transient transfection of human multiple myeloma cells by electroporation--an appraisal.

Cell lines represent the everyday workhorses for in vitro research on multiple myeloma (MM) and are regularly employed in all aspects of molecular and pharmacological investigations. Although loss-of-function studies using RNA interference in MM cell lines depend on successful knockdown, no well-established and widely applied protocol for efficient transient transfection has so far emerged. Here, we provide an appraisal of electroporation as a means to introduce either short-hairpin RNA expression vectors or synthesised siRNAs into MM cells. We found that electroporation using siRNAs was much more efficient than previously anticipated on the basis of transfection efficiencies deduced from EGFP-expression off protein expression vectors. Such knowledge can even confidently be exploited in "hard-to-transfect" MM cell lines to generate large numbers of transient knockdown phenotype MM cells. In addition, special attention was given to developing a protocol that provides easy implementation, good reproducibility and manageable experimental costs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app