Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

dLin52 is crucial for dE2F and dRBF mediated transcriptional regulation of pro-apoptotic gene hid.

Drosophila lin52 (dlin52) is a member of Myb transcription regulator complex and it shows a dynamic pattern of expression in all Drosophila tissues. Myb complex functions to activate or repress transcription in a site-specific manner; however, the detailed mechanism is yet to be clearly understood. Members of the Drosophila melanogaster Myb-MuvB/dREAM complex have been known to regulate expression of a wide range of genes including those involved in regulating apoptosis. E2F and its corepressor RBF also belong to this complex and together they regulate expression of genes involved in cell cycle progression, apoptosis, differentiation, and development. In the present study, we examined whether the depletion of dlin52 in developing photoreceptor neurons results in enhanced apoptosis and disorganisation of the ommatidia. Strikingly, we found that dLin52 is essential for transcriptional repression of the pro-apoptotic gene, hid; decrease in dlin52 levels led to dramatic induction of hid and apoptosis in eye-antennal discs. Reduction of Rpd3 (HDAC1), another member of the dREAM complex, also led to marginal upregulation of Hid. In addition, we also demonstrated that an optimum level of dLin52 is needed for dE2F1/2 activity on the hid promoter. dlin52 cooperates with dRBF and dE2F1/2 for recruitment of repressor complex on the hid promoter. Preliminary data indicate that Rpd3/HDAC1 also contributes to hid repression. Based on the findings, we conclude that dLin52 functions as a co-factor and modulates activity of members of dMyb/dREAM complex at hid promoter, thus regulating apoptosis by repressing this pro-apoptotic gene in the developing Drosophila eye.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app