JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

New insights into mechanisms of opioid inhibitory effects on capsaicin-induced TRPV1 activity during painful diabetic neuropathy.

Neuropharmacology 2014 October
Painful diabetic neuropathy is a disease of the peripheral sensory neuron with impaired opioid responsiveness. Since μ-opioid receptor (MOR) activation can inhibit the transient receptor potential vanilloid 1 (TRPV1) activity in peripherally sensory neurons, this study investigated the mechanisms of impaired opioid inhibitory effects on capsaicin-induced TRPV1 activity in painful diabetic neuropathy. Intravenous injection of streptozotocin (STZ, 45 mg/kg) in Wistar rats led to a degeneration of insulin producing pancreatic β-cells, elevated blood glucose, and mechanical hypersensitivity (allodynia). In these animals, local morphine's inhibitory effects on capsaicin-induced nocifensive behavior as well as on capsaicin-induced TRPV1 current in dorsal root ganglion cells were significantly impaired. These changes were associated with a loss in MOR but not TRPV1 in peripheral sensory neurons. Intrathecal delivery of nerve growth factor in diabetic animals normalized sensory neuron MOR and subsequently rescued morphine's inhibitory effects on capsaicin-induced TRPV1 activity in vivo and in vitro. These findings identify a loss in functional MOR on sensory neurons as a contributing factor for the impaired opioid inhibitory effects on capsaicin-induced TRPV1 activity during advanced STZ-induced diabetes. Moreover, they support growing evidence of a distinct regulation of opioid responsiveness during various painful states of disease (e.g. arthritis, cancer, neuropathy) and may give novel therapeutic incentives.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app