Add like
Add dislike
Add to saved papers

Coherent terabit communications with microresonator Kerr frequency combs.

Nature Photonics 2014 May 2
Optical frequency combs have the potential to revolutionize terabit communications(1). Generation of Kerr combs in nonlinear microresonators(2) represents a particularly promising option(3) enabling line spacings of tens of GHz. However, such combs may exhibit strong phase noise(4-6), which has made high-speed data transmission impossible up to now. Here we demonstrate that systematic adjustment of pump conditions for low phase noise(4,7-9) enables coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the comb. In a first experiment, we encode a data stream of 392 Gbit/s on a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM). A second experiment demonstrates feedback-stabilization of the comb and transmission of a 1.44 Tbit/s data stream over up to 300 km. The results show that Kerr combs meet the highly demanding requirements of coherent communications and thus offer an attractive solution towards chip-scale terabit/s transceivers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app