Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High-level expression and purification of recombinant human growth hormone produced in soluble form in Escherichia coli.

Human growth hormone (hGH) was one of the first recombinant proteins approved for the treatment of human growth disorders. Its small size (191 amino acids), possession of only 2 disulphide bonds and absence of posttranslational modifications make Escherichia coli the host of choice for its production on any scale. In this work, we have utilized an efficient T7 based expression system to produce high levels of soluble thioredoxin-hGH (Trx-hGH) fusion protein. We outline a relatively simple three step purification process employing two immobilized metal-affinity chromatography and one anion-exchange steps and removal of fusion partner by enterokinase cleavage yielding native hGH. The ability of cell populations to produce quantities of up to 1 g/L of the soluble Trx-hGH fusion protein has been tested in flask cultivations as well as in batch and fed-batch bioreactor runs. The sequence and structure of derived hGH were confirmed by mass spectrometry and circular dichroism and its native function, to induce cell proliferation, was confirmed by employing a Nb2 cell line proliferation assay.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app