Journal Article
Review
Add like
Add dislike
Add to saved papers

Luteal regression vs. prepartum luteolysis: regulatory mechanisms governing canine corpus luteum function.

Canine reproductive physiology exhibits several unusual features. Among the most interesting of these are the lack of an acute luteolytic mechanism, coinciding with the apparent luteal independency of a uterine luteolysin in absence of pregnancy, contrasting with the acute prepartum luteolysis observed in pregnant animals. These features indicate the existence of mechanisms different from those in other species for regulating the extended luteal regression observed in non-pregnant dogs, and the actively regulated termination of luteal function observed prepartum as a prerequisite for parturition. Nevertheless, the supply of progesterone (P4) depends on corpora lutea (CL) as its primary source in both conditions, resulting in P4 levels that are similar in pregnant and non-pregnant bitches during almost the entire luteal life span prior to the prepartum luteolysis. Consequently, the duration of the prolonged luteal phase in non-pregnant bitches frequently exceeds that of pregnant ones, which is a peculiarity when compared with other domestic animal species. Both LH and prolactin (PRL) are endocrine luteotrophic factors in the dog, the latter being the predominant one. In spite of increased availability of these hormones, luteal regression/luteolysis still takes place. Recently, possible mechanisms regulating the expression and function of PRL receptor have been implicated in the local, i.e., intraluteal regulation of PRL bioavailability and thus its steroidogenic potential. Similar mechanisms may relate to the luteal LH receptor. Most recently, evidence has been provided for an autocrine/paracrine role of prostaglandin E2 (PGE2) as a luteotrophic factor in the canine CL acting at the level of steroidogenic acute regulatory (STAR)-protein mediated supply of steroidogenic substrate, without having a significant impact on the enzymatic activity of the respective steroidogenic enzymes, 3β-hydroxysteroid-dehydrogenase (3βHSD, HSD3B2) and cytochrome P450 side-chain cleavage enzyme (P450scc, CYP11A1). Together with the strongly time-dependent expression of prostaglandin transporter, luteal prostaglandins seem to be involved more in the process of luteal formation than in termination of CL function in the dog. The possible roles of other factors such as vasoactive compounds, growth factors or cytokines have not been extensively studied but should not be neglected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app