Add like
Add dislike
Add to saved papers

Newly identified precipitating factors in mechanical ventilation-induced brain damage: implications for treating ICU delirium.

Delirium is 1.5 to 4.1 times as likely in intensive care unit patients when they are mechanically ventilated. While progress in treatment has occurred, delirium is still a major problem in mechanically ventilated patients. Based on studies of a murine mechanical ventilation model, we summarize evidence here for a novel mechanism by which such ventilation can quickly initiate brain damage likely to cause cognitive deficits expressed as delirium. That mechanism consists of aberrant vagal sensory input driving sustained dopamine D2 receptor (D2R) signaling in the hippocampal formation, which induces apoptosis in that brain area within 90 min without causing hypoxia, oxidative stress, or inflammatory responses. This argues for minimizing the duration and tidal volumes of mechanical ventilation and for more effectively reducing sustained D2R signaling than achieved with haloperidol alone. The latter might be accomplished by reducing D2R cell surface expression and D2R-mediated Akt inhibition by elevating protein expression of dysbindin-1C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app