Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Pharmacological blockade of the MaxiK channel attenuates experimental acute pancreatitis and associated lung injury in rats.

Increasing evidence has recently demonstrated that soluble heparan sulfate (HS), a degradation product of extracellular matrix produced by elastase, plays a key role in the aggravation of acute pancreatitis (AP) and associated lung injury. However little is known about the detailed mechanism underlying HS-induced inflammatory cascade. Our previous work has provided a valuable clue that a large-conductance K(+) channel (MaxiK) was involved in the HS-stimulated activation of murine macrophages. Here we attempted to ask whether pharmacological inhibition of the MaxiK channel will exert beneficial effects on the treatment of AP and secondary lung injury. The protective effects of paxilline, a specific blocker of MaxiK, on rats against sodium taurocholate induced AP were evaluated. Our data showed that paxilline substantially attenuated AP and resultant lung injury, mainly by limiting the burst of inflammatory responses, as proven by decreased plasma concentrations of tumor necrosis factor-α and macrophage inflammatory protein-2, together with unimpaired pancreatic enzyme activities in rats suffering from AP. Compared with the therapeutic administration, pre-treatment of paxilline showed superior potential to slow down the progress of AP. Furthermore, AP rats received paxilline exhibited improved histopathologic alterations both in the pancreas and the lungs, and even lower lung MPO activity. Taken together, our study provides evidence that MaxiK is involved in the spread of inflammatory responses and the following lung injury during the attack of AP, indicating that this ion channel is a promising candidate as a therapeutic target for AP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app