Add like
Add dislike
Add to saved papers

Photocatalytic degradation of imidacloprid by composite catalysts H3PW12O40/La-N-TiO2 under visible light.

Catalysts H3PW12O40/La-N-TiO2 were prepared and characterized by FT-IR, N2 adsorption-desorption analysis, SEM and UV-Vis diffuse reflection spectrum (DRS). It was demonstrated that Keggin structure of H3PW12O40 retained in composite materials by the FT-IR test; After doping La-N, the BET surface area of them is nearly 2 times as that of pure TiO2; the SEM images of the catalysts revealed that they were consist of relatively uniform spherical grains with good dispersion; UV-Vis DRS showed the photoresponse performance of the prepared composites for the visible light area were improved after doping La and N. The prepared composites were used as photocatalysts in degradation of pesticide imidacloprid. Results revealed that 30%H3 PW12O40/0.3%La-1.0%N-TiO2 possessed the best photocatalytic activity under visible light above 400 nm. Thus, imidacloprid were degraded 91.57% after 3 h irradiation. When 30% H3PW12O40/0.3%La-1.0%N-TiO2 was used as catalysts, degradation ration could even reach 98.89% after 6 h.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app