Journal Article
Review
Add like
Add dislike
Add to saved papers

Dopamine D₁-D₂ receptor heteromer regulates signaling cascades involved in addiction: potential relevance to adolescent drug susceptibility.

Adolescence is a developmental period that has been associated with heightened sensitivity to psychostimulant-induced reward, thus placing adolescents at increased risk to develop drug addiction. Although alterations in dopamine-induced synaptic plasticity are perhaps the most critical factor in mediating addiction processes, developmental differences in the cell signaling mechanisms that contribute to synaptic plasticity, and their contribution to adolescent reward sensitivity, has been grossly understudied. The most abundant dopamine receptors, the D1 and D2 receptors, as well as the dopamine D1-D2 receptor heteromer, exhibit age-dependent and brain region-specific changes in their expression and function and are responsible for regulating cell signaling pathways known to significantly contribute to the neurobiological mechanisms underlying addiction. The D1-D2 receptor heteromer, for instance, has been associated with calcium calmodulin kinase IIα, brain-derived neurotrophic factor and glycogen synthase kinase 3 (GSK-3) signaling, three proteins highly implicated in the regulation of glutamate transmission and synaptic plasticity and which regulate addiction to amphetamine, opioids and cocaine. Therefore, in this review the importance of these signaling proteins as potential mediators of addiction susceptibility in adolescence will be highlighted, and the therapeutic potential of the D1-D2 receptor heteromer in addiction will be discussed. It is the overall goal of this review to draw attention to the research gap in dopamine-induced cell signaling in the adolescent brain--knowledge that would provide much-needed insights into adolescent addiction vulnerability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app