JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mercury sensing and toxicity studies of novel latex fabricated silver nanoparticles.

Safe and eco-friendly alternatives to currently used hazardous chemico-physical methods of silver nanoparticles (AgNPs) synthesis are need of time. Rapid, low cost, selective detection of toxic metals in environmental sample is important to take safety action. Toxicity assessment of engineered AgNPs is essential to avoid its side effects on human and non-target organisms. In the present study, biologically active latex from Euphorbia heterophylla (Poinsettia) was utilized for synthesis of AgNPs. AgNPs was of spherical shape and narrow size range (20-50 nm). Occurrence of elemental silver and crystalline nature of AgNPs was analyzed. Role of latex metabolites in reduction and stabilization of AgNPs was analyzed by FT-IR, protein coagulation test and phytochemical analysis. Latex-synthesized AgNPs showed potential in selective and sensitive detection of toxic mercury ions (Hg(2+)) with limit of detection around 100 ppb. Addition of Hg(2+) showed marked deviation in color and surface plasmon resonance spectra of AgNPs. Toxicity studies on aquatic non-target species Daphnia magna showed that latex-synthesized AgNPs (20.66 ± 1.52% immobilization) were comparatively very less toxic than chemically synthesized AgNPs (51.66 ± 1.52% immobilization). Similarly, comparative toxicity study on human red blood cells showed lower hemolysis (4.46 ± 0.01%) by latex-synthesized AgNPs as compared to chemically synthesized AgNPs causing 6.14 ± 0.01% hemolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app