JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells.

Food & Function 2014 July 26
It is thought that the neuronal cell loss caused by oxidative stress is the primary mechanism underlying the pathogenesis of several neurodegenerative disorders. Glutamate is an endogenous neurotransmitter, but at high concentrations it can act as a neurotoxicant by increasing the intracellular levels of reactive oxygen species (ROS). Therefore, the development of factors that can attenuate glutamate-induced oxidative stress in neuronal cells is a good strategy by which new drugs could be discovered that may treat or prevent neurodegenerative diseases. Here, the neuroprotective effects of kaempferol (KF) isolated from the stems of butterbur (Petasites japonicus) were examined in glutamate-treated hippocampal neuronal cells (HT22). The administration of KF (25 μM) resulted in a significant increase in cell viability (105.18 ± 7.48%) compared with the control (100.00 ± 3.05%), while glutamate (5 mM) reduced cell viability by 39.94 ± 1.61%. The glutamate-induced calcium (Ca(2+)) influx (1.93 ± 0.08-fold) was significantly reduced by 0.89 ± 0.02-fold following the administration of 25 μM KF. Additionally, when HT22 cells were stressed with excessive glutamate, there was a 3.70 ± 0.01-fold increase in intracellular ROS generation, even though this was effectively attenuated by KF (25 μM, 0.72 ± 0.01-fold). The protective effects of KF in HT22 cells were later confirmed using a lactate dehydrogenase (LDH) assay and a FITC-annexin V/propidium iodide double staining procedure. These findings also revealed that the neuroprotective effects of KF are a result of the regulation of the expression levels of proteins, such as Bcl-2, Bid, apoptosis-inducing factor (AIF), and mitogen-activated protein kinase (MAPK). This is the first report to investigate the neuroprotective influence of KF in glutamate-treated HT22 cells. These data demonstrate that KF may be a useful candidate for pharmacological therapies that can prevent and treat neurodegenerative diseases such as Alzheimer's disease (AD).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app