JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Primordial dwarfism gene maintains Lin28 expression to safeguard embryonic stem cells from premature differentiation.

Cell Reports 2014 May 9
Primordial dwarfism (PD) is characterized by global growth failure, both during embryogenesis and postnatally. Loss-of-function germline mutations in La ribonucleoprotein domain family, member 7 (LAPR7) have recently been linked to PD. Paradoxically, LARP7 deficiency was previously assumed to be associated with increased cell growth and proliferation via activation of positive transcription elongation factor b (P-TEFb). Here, we show that Larp7 deficiency likely does not significantly increase P-TEFb activity. We further discover that Larp7 knockdown does not affect pluripotency but instead primes embryonic stem cells (ESCs) for differentiation via downregulation of Lin28, a positive regulator of organismal growth. Mechanistically, we show that Larp7 interacts with a poly(A) polymerase Star-PAP to maintain Lin28 mRNA stability. We propose that proper regulation of Lin28 and PTEFb is essential for embryonic cells to achieve a sufficient number of cell divisions prior to differentiation and ultimately to maintain proper organismal size.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app