Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In vivo quantification of SPIO nanoparticles for cell labeling based on MR phase gradient images.

Along with the development of modern imaging technologies, contrast agents play increasingly important roles in both clinical applications and scientific research. Super-paramagnetic iron oxide (SPIO) nanoparticles, a negative contrast agent, have been extensively used in magnetic resonance imaging (MRI), such as in vivo labeling and tracking of cells. However, there still remain many challenges, such as in vivo quantification of SPIO nanoparticles. In this work, an MR phase gradient-based method was proposed to quantify the SPIO nanoparticles. As a calibration, a phantom experiment using known concentrations (10, 25, 50, 100, 150 and 250 µg/ml) of SPIO was first conducted to verify the proposed quantification method. In a following in vivo experiment, C6 glioma cells labeled with SPIO nanoparticles were implanted into flanks of four mice, which were scanned 1-3 days post-injection for in vivo quantification of SPIO concentration. The results showed that the concentration of SPIO nanoparticles could be determined in both phantom and in vivo experiments using the developed MR phase gradients approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app