Add like
Add dislike
Add to saved papers

Semiconducting composite oxide Y2CuO4-5CuO thin films for investigation of photoelectrochemical properties.

An octa-nuclear heterobimetallic complex [Y2Cu6Cl0.7(dmae)6(OAc)7.3(OH)4(H2O)2]·3H2O·0.3CH3C6H5 (dmae = dimethylaminoethanoate; OAc = acetato) was synthesized, characterized by melting point analysis, elemental analysis, FT-IR, and single crystal X-ray diffraction analysis and implemented at 600 °C under an oxygen atmosphere for the deposition of Y2CuO4-5CuO composite thin films by aerosol assisted chemical vapor deposition (AACVD). The chemical composition and surface morphology of the deposited thin film have been determined by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis that suggest the formation of impurity-free crystallite mixtures of the Y2CuO4-5CuO composite, with well-defined evenly distributed particles in the size range of 19-24 nm. An optical band gap energy of 1.82 eV was estimated by UV-visible spectrophotometry. PEC studies show that under illumination with a 150 W halogen lamp and at a potential of 0.8 V, a photocurrent density of 9.85 μA cm(-2) was obtained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app