Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals.

Carbohydrate Polymers 2012 September 2
Fibrous bio-nanocomposite mats consisting of cellulose nanocrystals (CNCs) and poly(lactic acid) (PLA) were electrospun from a solvent mixture consisting of N,N'-dimethylformamide and chloroform at room temperature. Morphological, mechanical and thermal properties, as well as in vitro degradation of nanocomposite mats were characterized as a function of material composition. Average diameter of the electrospun fibers decreased with increased CNC-loading level. Thermal stability, and tensile strength and modulus of nanocomposite mats were effectively improved by the addition of CNCs up to the 5 wt% level. The reinforcement of CNCs on electrospun mats was illustrated by the observation of SEM-based morphologies on the tensile fracturing process of nanocomposite mats. At the CNC content of 5 wt%, the maximum tensile stress and Young's modulus of the nanocomposite mats increased by 5 and 22 folds than those of neat PLA mats, respectively. Moreover, compared with neat PLA mats, the nanocomposite mats, especially at high CNC-loading levels, degraded more rapidly in phosphate-buffered saline solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app