Add like
Add dislike
Add to saved papers

Development of sampling efficiency and internal noise in motion detection and discrimination in school-aged children.

Vision Research 2014 July
The aim of this study was to use an equivalent noise paradigm to investigate the development and maturation of motion perception, and how the underlying limitations of sampling efficiency and internal noise effect motion detection and direction discrimination in school-aged children (5-14 years) and adults. Contrast energy thresholds of a 2c/deg sinusoidal grating drifting at 1.0 or 6.0 Hz were measured as a function of added dynamic noise in three tasks: detection of a drifting grating; detection of the sum of two oppositely drifting gratings and direction discrimination of oppositely drifting gratings. Compared to the ideal observer, in both children and adults, the performance for all tasks was limited by reduced sampling efficiency and internal noise. However, the thresholds for discrimination of motion direction and detection of moving gratings show very different developmental profiles. Motion direction discrimination continues to improve after the age of 14 years due to an increase in sampling efficiency that differs with speed. Motion detection and summation were already mature at the age of 5 years, and internal noise was the same for all tasks. These findings were confirmed in a 1-year follow-up study on a group of children from the initial study. The results support suggestions that the detection of a moving pattern and discriminating motion direction are processed by different systems that may develop at different rates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app