Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MiRNA 17 family regulates cisplatin-resistant and metastasis by targeting TGFbetaR2 in NSCLC.

MicroRNAs (miRNAs) have been proven to play crucial roles in cancer, including tumor chemotherapy resistance and metastasis of non-small-cell lung cancer (NSCLC). TGFβ signal pathway abnormality is widely found in cancer and correlates with tumor proliferation, apoptosis and metastasis. Here, miR-17, 20a, 20b were detected down-regulated in A549/DDP cells (cisplatin resistance) compared with A549 cells (cisplatin sensitive). Over-expression of miR-17, 20a, 20b can not only decrease cisplatin-resistant but also reduce migration by inhibiting epithelial-to-mesenchymal transition (EMT) in A549/DDP cells. These functions of miR-17, 20a, 20b may be caused at least in part via inhibition of TGFβ signal pathway, as miR-17, 20a, 20b are shown to directly target and repress TGF-beta receptor 2 (TGFβR2) which is an important component of TGFβ signal pathway. Consequently, our study suggests that miRNA 17 family (including miR-17, 20a, 20b) can act as TGFβR2 suppressor for reversing cisplatin-resistant and suppressing metastasis in NSCLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app