Add like
Add dislike
Add to saved papers

Coumarin-substituted manganese phthalocyanines: synthesis, characterization, photovoltaic behaviour, spectral and electrochemical properties.

The synthesis and spectroscopic characterization of novel manganese(III) phthalocyanines bearing 7-oxy-4-(4-methoxyphenyl)-8-methylcoumarin or/and chloro groups have been achieved. The effect of alpha and beta substitution on the ligand- and metal-based reduction processes of the manganese phthalocyanine complexes and their interaction with dioxygen were investigated. The more effective interaction of the central metal of the beta coumarin substituted complex with dioxygen than that of its alpha substituted analogue was attributed to the hindrance of the interaction by the nonplanarity in the case of alpha substitution. Similarly, the aggregation tendency was lower in the case of alpha substitution. Among the fabricated coumarin-substituted manganese phthalocyanine donor layer and fullerene (C60) acceptor based photovoltaic heterojunction devices, the one containing 8 exhibited the best performance. The effect of the thickness of the active Pc layer on solar cell parameters has also been investigated. A nearly thickness independent open circuit voltage was observed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app