JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modulation of early inflammatory response by different balanced and non-balanced colloids and crystalloids in a rodent model of endotoxemia.

The use of hydroxyethyl starch (HES) in sepsis has been shown to increase mortality and acute kidney injury. However, the knowledge of the exact mechanism by which several fluids, especially starch preparations may impair end-organ function particularly in the kidney, is still missing. The aim of this study was to measure the influence of different crystalloid and colloid fluid compositions on the inflammatory response in the kidney, the liver and the lung using a rodent model of acute endotoxemia. Rats were anesthetized and mechanically ventilated. Lipopolysaccharide (5 mg/kg) was administered intravenously. After one hour crystalloids [lactate-buffered (RLac) or acetate-buffered (RAc)] were infused i.v. (30 ml/kg) in all groups. At 2 hours rats either received different crystalloids (75 ml/kg of RLac or RAc) or colloids (25 ml/kg of HES in saline or HES in RAc or gelatin in saline). Expression of messenger RNA for cytokine-induced neutrophil chemoattractant-1 (CINC-1), monocyte chemotactic protein-1 (MCP-1), necrosis factor α (TNFα) and intercellular adhesion molecule 1 (ICAM-1) was assessed in kidney, liver and lung tissue by real-time PCR after 4 hours. The use of acetate-buffered solutions was associated with a significantly higher expression of CINC-1 and TNFα mRNA in the liver, in the kidney and in the lung. Only marginal effects of gelatin and hydroxyethyl starch on mRNA expression of inflammatory mediators were observed. The study provides evidence that the type of buffering agent of different colloidal and crystalloid solutions might be a crucial factor determining the extent of early end-organ inflammatory response in sepsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app