Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Investigation of evolved paraoxonase-1 variants for prevention of organophosphorous pesticide compound intoxication.

We investigated the ability of the engineered paraoxonase-1 variants G3C9, VII-D11, I-F11, and VII-D2 to afford protection against paraoxon intoxication. Paraoxon is the toxic metabolite of parathion, a common pesticide still in use in many developing countries. An in vitro investigation showed that VII-D11 is the most efficient variant at hydrolyzing paraoxon with a kcat/Km of 2.1 × 10(6) M(-1) min(-1) and 1.6 × 10(6) M(-1) min(-1) for the enzyme expressed via adenovirus infection of 293A cells and mice, respectively. Compared with the G3C9 parent scaffold, VII-D11 is 15- to 20-fold more efficacious at hydrolyzing paraoxon. Coinciding with these results, mice expressing VII-D11 in their blood survived and showed no symptoms against a cumulative 6.3 × LD50 dose of paraoxon, whereas mice expressing G3C9 experienced tremors and only 50% survival. We then determined whether VII-D11 can offer protection against paraoxon when present at substoichiometric concentrations. Mice containing varying concentrations of VII-D11 in their blood (0.2-4.1 mg/ml) were challenged with doses of paraoxon at fixed stoichiometric ratios that constitute up to a 10-fold molar excess of paraoxon to enzyme (1.4-27 × LD50 doses) and were assessed for tremors and mortality. Mice were afforded complete asymptomatic protection below a paraoxon-to-enzyme ratio of 8:1, whereas higher ratios produced tremors and/or mortality. VII-D11 in mouse blood coeluted with high-density lipoprotein, suggesting an association between the two entities. Collectively, these results demonstrate that VII-D11 is a promising candidate for development as a prophylactic catalytic bioscavenger against organophosphorous pesticide toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app