Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PPARγ in vagal neurons regulates high-fat diet induced thermogenesis.

Cell Metabolism 2014 April 2
The vagus nerve innervates visceral organs providing a link between key metabolic cues and the CNS. However, it is not clear whether vagal neurons can directly respond to changing lipid levels and whether altered "lipid sensing" by the vagus nerve regulates energy balance. In this study, we systematically profiled the expression of all known nuclear receptors in laser-captured nodose ganglion (NG) neurons. In particular, we found PPARγ expression was reduced by high-fat-diet feeding. Deletion of PPARγ in Phox2b neurons promoted HFD-induced thermogenesis that involved the reprograming of white adipocyte into a brown-like adipocyte cell fate. Finally, we showed that PPARγ in NG neurons regulates genes necessary for lipid metabolism and those that are important for synaptic transmission. Collectively, our findings provide insights into how vagal afferents survey peripheral metabolic cues and suggest that the reduction of PPARγ in NG neurons may serve as a protective mechanism against diet-induced weight gain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app