Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cell specific electrodes for neuronal network reconstruction and monitoring.

Analyst 2014 July 8
Direct interfacing of neurons with electronic devices has been investigated for both prosthetic and neuro-computing applications. In vitro neuronal networks provide great tools not only for improving neuroprostheses but also to take advantage of their computing abilities. However, it is often difficult to organize neuronal networks according to specific cell distributions. Our aim was to develop a cell-type specific immobilization of neurons on individual electrodes to produce organized in vitro neuronal networks on multi-electrode arrays (MEAs). We demonstrate the selective capture of retinal neurons on antibody functionalized surfaces following the formation of self-assembled monolayers from protein-thiol conjugates by simple contact and protein-polypyrrole deposits by electrochemical functionalization. This neuronal selection was achieved on gold for either cone photoreceptors or retinal ganglion neurons using a PNA lectin or a Thy1 antibody, respectively. Anti-fouling of un-functionalized gold surfaces was optimized to increase the capture efficiencies. The technique was extended to electrode arrays by addressing electropolymerization of pyrrole monomers and pyrrole-protein conjugates to active electrodes. Retinal ganglion cell recording on the array further demonstrated the integrity of these neurons following their selection on polypyrrole-coated electrodes. Therefore, this protein-polypyrrole electrodeposition could provide a new approach to generate organized in vitro neuronal networks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app