JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

PETRORISK: a risk assessment framework for petroleum substances.

PETRORISK is a modeling framework used to evaluate environmental risk of petroleum substances and human exposure through these routes due to emissions under typical use conditions as required by the European regulation for the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). Petroleum substances are often complex substances comprised of hundreds to thousands of individual hydrocarbons. The physicochemical, fate, and effects properties of the individual constituents within a petroleum substance can vary over several orders of magnitude, complicating risk assessment. PETRORISK combines the risk assessment strategies used on single chemicals with the hydrocarbon block approach to model complex substances. Blocks are usually defined by available analytical characterization data on substances that are expressed in terms of mass fractions for different structural chemical classes that are specified as a function of C number or boiling point range. The physicochemical and degradation properties of the blocks are determined by the properties of representative constituents in that block. Emissions and predicted exposure concentrations (PEC) are then modeled using mass-weighted individual representative constituents. Overall risk for various environmental compartments at the regional and local level is evaluated by comparing the PECs for individual representative constituents to corresponding predicted no-effect concentrations (PNEC) derived using the Target Lipid Model. Risks to human health are evaluated using the overall predicted human dose resulting from multimedia environmental exposure to a substance-specific derived no-effect level (DNEL). A case study is provided to illustrate how this modeling approach has been applied to assess the risks of kerosene manufacture and use as a fuel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app