JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads.

Phenol and heavy metals in petroleum waste are environmental and human health concerns, but physicochemical removal is often cost-prohibitive and can produce toxic secondary products and treatment residues. An environmentally benign alternative combines corn cob silica with alginate and immobilized bacteria into beads for treating contaminated water. The concentration of phenol was decreased >92% by Pseudomonas putida YNS1 on aliginate-silica beads (2%, w/v) after equilibrating for 96h with water containing 214mg phenol/L. GC-MS analysis indicated formation of benzoquinone and other polar products. Beads containing corn cob silica decreased Cu concentrations by 84-88% and Cd by 83-87% within 24h. In a mixture of 114mg phenol, 43mg Cu and 51mg Cd/L, phenol removal (93% within 96h) only occurred with beads containing the silica and bacterial strain. Beads containing corn cob silica removed >97% of the Cu and >99% of the Cd, critical for reducing toxicity to the bacteria. Beads with the immobilized strain removed phenol when zeolite was used instead of corn cob silica, but beads with silica were more effective for Cu and Cd removal. Results show the potential of corn cob silica combined with alginate and immobilized bacteria for removing phenol and heavy metals from contaminated water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app