JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

1α,25-dihydroxyvitamin D3 in combination with transforming growth factor-β increases the frequency of Foxp3⁺ regulatory T cells through preferential expansion and usage of interleukin-2.

Immunology 2014 September
A high prevalence of vitamin D insufficiency and deficiency exists worldwide, which is associated with an increased incidence and severity of a range of immune-mediated diseases. This has resulted in considerable interest in the immunodulatory functions of vitamin D. The active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], has been shown to increase the frequency of Foxp3(+) CD4(+) T regulatory (Treg) cells when present at high concentrations or under strong T-cell stimulation in culture. Supporting evidence exists in vivo for a positive association between serum 25(OH)D and Foxp3(+) Treg cell numbers in humans. The aim of this work was to identify the cytokine milieu required in vitro to promote Foxp3(+) Treg cells in cultures containing 1,25(OH)2D3 at more moderate concentrations (10(-7) M). Stimulation of human CD4(+) T cells with a combination of 1,25(OH)2D3 and transforming growth factor-β (TGF-β) greatly increased the frequency of Foxp3(+) Treg cells, which is proposed to result from the preferential expansion of Foxp3(+) Treg cells, as compared with the Foxp3(-) effector T cells, in culture. The differential effect on proliferation may result from enhanced availability and usage of interleukin-2 by the Foxp3(+) Treg cells compared with Foxp3(-) effector T cells. In summary, modulation of the cytokine environment to one high in TGF-β in the presence of 1,25(OH)2D3(10(-7) M) significantly increased Foxp3(+) Treg cell frequency. These data provide additional evidence for the important immunomodulatory properties of 1,25(OH)2D3 that exist and may help to control inflammatory diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app