JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Co-delivery of doxorubicin and siRNA with reduction and pH dually sensitive nanocarrier for synergistic cancer therapy.

Small 2014 July 10
Drug resistance is the greatest challenge in clinical cancer chemotherapy. Co-delivery of chemotherapeutic drugs and siRNA to tumor cells is a vital means to silence drug resistant genes during the course of cancer chemotherapy for an improved chemotherapeutic effect. This study aims at effective co-delivery of siRNA and anticancer drugs to tumor cells. A ternary block copolymer PEG-PAsp(AED)-PDPA consisting of pH-sensitive poly(2-(diisopropyl amino)ethyl methacrylate) (PDPA), reduction-sensitive poly(N-(2,2'-dithiobis(ethylamine)) aspartamide) PAsp(AED), and poly(ethylene glycol) (PEG) is synthesized and assembled into a core-shell structural micelle which encapsulated doxorubicin (DOX) in its pH-sensitive core and the siRNA-targeting anti-apoptosis BCL-2 gene (BCL-2 siRNA) in a reduction-sensitive interlayer. At the optimized size and zeta potential, the nanocarriers loaded with DOX and BCL-2 siRNA may effectively accumulate in the tumor site via blood circulation. Moreover, the dual stimuli-responsive design of micellar carriers allows microenviroment-specific rapid release of both DOX and BCL-2 siRNA inside acidic lysosomes with enriched reducing agent, glutathione (GSH, up to 10 mM). Consequently, the expression of anti-apoptotic BCL-2 protein induced by DOX treatment is significantly down-regulated, which results in synergistically enhanced apoptosis of human ovarian cancer SKOV-3 cells and thus dramatically inhibited tumor growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app