JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

LRRK2 and neuroinflammation: partners in crime in Parkinson's disease?

It is now well established that chronic inflammation is a prominent feature of several neurodegenerative disorders including Parkinson's disease (PD). Growing evidence indicates that neuroinflammation can contribute greatly to dopaminergic neuron degeneration and progression of the disease. Recent literature highlights that leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in both autosomal-dominantly inherited and sporadic PD cases, modulates inflammation in response to different pathological stimuli. In this review, we outline the state of the art of LRRK2 functions in microglia cells and in neuroinflammation. Furthermore, we discuss the potential role of LRRK2 in cytoskeleton remodeling and vesicle trafficking in microglia cells under physiological and pathological conditions. We also hypothesize that LRRK2 mutations might sensitize microglia cells toward a pro-inflammatory state, which in turn results in exacerbated inflammation with consequent neurodegeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app