Add like
Add dislike
Add to saved papers

Blockade of ankyrin repeat-rich membrane spanning protein modulates extracellular signal-regulated kinase expression and inhibits allergic inflammation in ovalbumin-sensitized mice.

Ankyrin repeat-rich membrane spanning protein (ARMS), also known as kinase D-interacting substrate of 220 kDa (Kidins220), is a transmembrane protein that has been reported to be involved in the pathogenesis of asthma through the nerve growth factor (NGF)/tyrosine kinase A (TrkA) receptor signaling pathway. To investigate whether NGF/TrkA-Kidins220/ARMS-extracellular signal-regulated kinase (ERK) signaling is activated in airway inflammation of asthma, BALB/c mice were sensitized and challenged with ovalbumin (OVA). The effects of Kidins220/ARMS on ERK, interleukin (IL)-1β, IL-4 and tumor necrosis factor (TNF)-α in lung tissues following the allergic airway challenge in mice were assessed by administering anti-ARMS antibody to the mice. Pathological changes in the bronchi and lung tissues were examined via hematoxylin and eosin staining. The phosphorylated ERK, IL-1β, IL-4 and TNF-α levels were determined using western blot analysis and ELISA and were found to be overexpressed in lung tissues following the allergen challenge. Moreover, after the mice were treated with anti-NGF, anti-TrkA or anti-ARMS, the levels of Kidins220/ARMS, phosphorylated ERK, IL-1β, IL-4, TNF-α and allergen-induced airway inflammation were downregulated. These results suggested that NGF/TrkA-Kidins220/ARMS-ERK signaling was activated in airway inflammation induced by the allergic airway challenge, possibly representing a new mechanism in asthma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app