Add like
Add dislike
Add to saved papers

Detecting doping use: more than an analytical problem.

The recent Armstrong case, where more than 250 negative doping tests are confronted with the athlete's confession of erythropoietin use, blood doping, steroid, and growth hormone abuse, illustrates the limitations of current laboratory tests in detecting doping in sport. Despite numerous doping controls and simultaneous indications of common doping abuse among professional athletes in the last two decades, the number of positive urine tests for recombinant human erythropoietin (rHuEPO) remains remarkably low. Athletes are using various masking strategies, among them protease inhibitors, intravenous injections of rHuEPO and alternative erythropoiesis stimulating agents. As one of the countermeasures, the Athlete's Biological Passport has been introduced. The sensitivity of the Athlete's Biological Passport is limited if the effect of a low-dose doping remains within the intra-individual reference range. A possible solution could be the use of a novel Epo test (MAIIA Diagnostics). Another performance-enhancing strategy is the return to 'old' doping techniques, such as autologous blood transfusions. Several indirect methods to detect autologous blood transfusions have been proposed with the majority relying on changes in erythropoiesis-sensitive blood markers. Currently, an algorithm based on the haemoglobin (Hb) level concentration and the percentage of reticulocytes (OFF-hr model; Hb(g/l)-60·√%ret) is approved by the World Anti-Doping Agency. Genetic factors have been identified which may interfere with test interpretation. A large inter- and intra-ethnic variation in testosterone glucuronidation and excretion has been described. Consideration of genetic variation should improve performance of the testosterone doping test. Taking into account the pre-analytical care and better tailoring of the threshold values could increase test sensitivity. Anti-doping laboratories should routinely adjust for multiple testing as failure of doping control to detect cheaters could lead to more frequent controls. Finally, despite the huge technological progress, there is a need for increased collaboration between physiologists, analytical chemists, biostatisticians, and ethicists to reduce doping in sport.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app